答案
解:(1)∵四边形ABCD是矩形,
∴∠A=∠D=90°,AD=BC=7,DC=AB=4.
∴∠APE+∠AEP=90°,
∵PE⊥PC,
∴∠EPC=90°,
∴∠APE+∠DPC=90°,
∴∠AEP=∠DPC,(1分)
∴△AEP∽△DPC,
∴
=,(2分)
∵△PEC是等腰三角形,∠EPC=90°,
∴PE=CP,
∴AP=DC=4,
∴PD=AD-AP=3;(3分)
(2)设PD=x,则AP=7-x,
∵
=,
∴
=,(4分)
在△CPE中,∠EPC=90°,∠PEC=30°,
∴
=tan30°=,
∴
=,
∴
=,
∴
x=7-4,
∴
AP=4.(5分)
解:(1)∵四边形ABCD是矩形,
∴∠A=∠D=90°,AD=BC=7,DC=AB=4.
∴∠APE+∠AEP=90°,
∵PE⊥PC,
∴∠EPC=90°,
∴∠APE+∠DPC=90°,
∴∠AEP=∠DPC,(1分)
∴△AEP∽△DPC,
∴
=,(2分)
∵△PEC是等腰三角形,∠EPC=90°,
∴PE=CP,
∴AP=DC=4,
∴PD=AD-AP=3;(3分)
(2)设PD=x,则AP=7-x,
∵
=,
∴
=,(4分)
在△CPE中,∠EPC=90°,∠PEC=30°,
∴
=tan30°=,
∴
=,
∴
=,
∴
x=7-4,
∴
AP=4.(5分)