(2012·亭湖区一模)如图,在△ABC中,∠ACB=90°,AC=BC=2,M是边AC的中点,CH⊥BM于H.8
| ||
| 5 |
2
| ||
| 5 |
| ||
| 2 |
8
| ||
| 5 |
2
| ||
| 5 |
| ||
| 2 |
8
| ||
| 5 |
2
| ||
| 5 |
| ||
| 2 |
解:(1)在△MBC中,∠MCB=90°,BC=2,| 1 |
| 2 |
| 12+22 |
| 5 |
| CM |
| BM |
| ||
| 5 |
| ||
| 5 |
| MA |
| MH |
| MB |
| MA |

| AH |
| AB |
| AM |
| BM |
| 22+12 |
| 5 |
| 2 |
| 2 |
| AM |
| BM |
| 1 | ||
|
| 2 |
2
| ||
| 5 |
| ||
| 5 |
| 1-sin2∠MCH |
2
| ||
| 5 |
2
| ||
| 5 |
2
| ||
| 5 |
8
| ||
| 5 |
2
| ||
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
2
| ||
| 5 |
2
| ||
| 5 |
| ||
| 5 |
| 5 | ||
2
|
| ||
| 2 |
8
| ||
| 5 |
2
| ||
| 5 |
| ||
| 2 |
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2| 3 |
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A1,A2,A3,A4…,则点A30的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2| 3 |