切线的性质;梯形;解直角三角形.
(1)由⊙O切AB于M,根据切线的性质,可得OM⊥AB,又由∠OAB=30°,∠OBA=45°,由三角函数的性质,可得AM=
OM,BM=OM,继而可得
OM+OM=2,则可求得⊙O的半径OM的长度;
(2)首先过点D作DG⊥AB于点G,由⊙O分别切AB,AD于F,M,且∠OAB=30°,根据切线长定理,即可求得∠BAD的度数,求得DG与BC的长,继而求得AD与AG的长,则可求得答案.
此题考查了切线的性质、切线长定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.