试题
题目:
(2013·滨湖区一模)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于F,连结BF.
(1)求证:CF=BD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并证明你的结论;
(3)在(2)的条件下,求tan∠AFC的值.
答案
(1)证明:∵AB∥CF,
∴∠DAE=∠EFC,
∵E是CD的中点,
∴DE=CE,
∵在△ADE和△FCE中,
∠DAE=∠EFC
∠AED=∠CEF
DE=CE
,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵AD=BD
∴CF=BD;
(2)四边形CDBF是正方形,理由如下:
证明:∵CF∥BD,CF=BD,
∴四边形CDBF是平行四边形,
∵∠ACB=90°,AD=BD,
∴CD=
1
2
AB=BD,
∴四边形CDBF是正方形;
(3)解:∵四边形CDBF是正方形,
∴BF=BD,
∵AD=BD,
∴AB=2BF,
∵CF∥AB,
∴∠AFC=∠FAB,
∴tan∠AFC=tan∠FAB=
1
2
.
(1)证明:∵AB∥CF,
∴∠DAE=∠EFC,
∵E是CD的中点,
∴DE=CE,
∵在△ADE和△FCE中,
∠DAE=∠EFC
∠AED=∠CEF
DE=CE
,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵AD=BD
∴CF=BD;
(2)四边形CDBF是正方形,理由如下:
证明:∵CF∥BD,CF=BD,
∴四边形CDBF是平行四边形,
∵∠ACB=90°,AD=BD,
∴CD=
1
2
AB=BD,
∴四边形CDBF是正方形;
(3)解:∵四边形CDBF是正方形,
∴BF=BD,
∵AD=BD,
∴AB=2BF,
∵CF∥AB,
∴∠AFC=∠FAB,
∴tan∠AFC=tan∠FAB=
1
2
.
考点梳理
考点
分析
点评
正方形的判定;全等三角形的判定与性质;解直角三角形.
(1)根据全等三角形的判定方法可证明△ADE≌△FCE,所以CF=AD,因为D是AB的中点,所以AD=BD,所以CF=BD;
(2)四边形CDBF是正方形,根据邻边相等和有一个角为90°的平行四边形为正方形证明即可;
(3)由平行线的性质可得:∠AFC=∠BAF,所以求tan∠AFC的值可转化为求tan∠FAB的值.
本题考查了全等三角形的判定和性质、正方形的判定和性质以及锐角三角函数的定义,题目的综合性较强,难度中等.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )