正方形的判定;等腰三角形的判定与性质;解直角三角形.
(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得△EOC与△FOC是等腰三角形,即可得OE=OF;
(2)由(1)知,OE=OC=OF,当OC=OA,即点O为AC的中点时,可得OE=OC=OF=OA,证得四边形AECF是矩形;再由∠ACB=90°,MN∥BC,得出AC⊥EF,从而证明矩形AECF是正方形;根据正方形的性质及勾股定理求出AC=2,OA=OE=1,在Rt△ABC中,由正弦函数的定义得到∠B=30°,则∠AGO=30°,OG=
.过E作EH⊥AB于H,设EH=x,由GE+OE=OG,列出方程2x+1=
,解方程求出x=
,然后在Rt△AHE中,利用正弦函数的定义求出sin∠HAE的值,即可得到sin∠BAE的值.
此题考查了平行线的性质,角平分线的定义,等腰三角形的判定与性质,正方形、矩形的判定与性质,解直角三角形.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.