试题
题目:
(2012·和平区一模)如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
答案
解:作BE⊥l于点E,DF⊥l于点F.
∵α+∠DAF=180°-∠BAD=180°-90°=90°,
∠ADF+∠DAF=90°,
∴∠ADF=α=36°.
根据题意,得BE=24mm,DF=48mm.
在Rt△ABE中,sin
α=
BE
AB
,
∴
AB=
BE
sin36°
=
24
0.60
=40
mm
在Rt△ADF中,cos
∠ADF=
DF
AD
,
∴
AD=
DF
cos36°
=
48
0.80
=60
mm.
∴矩形ABCD的周长=2(40+60)=200mm.
解:作BE⊥l于点E,DF⊥l于点F.
∵α+∠DAF=180°-∠BAD=180°-90°=90°,
∠ADF+∠DAF=90°,
∴∠ADF=α=36°.
根据题意,得BE=24mm,DF=48mm.
在Rt△ABE中,sin
α=
BE
AB
,
∴
AB=
BE
sin36°
=
24
0.60
=40
mm
在Rt△ADF中,cos
∠ADF=
DF
AD
,
∴
AD=
DF
cos36°
=
48
0.80
=60
mm.
∴矩形ABCD的周长=2(40+60)=200mm.
考点梳理
考点
分析
点评
专题
解直角三角形;正方形的性质;相似三角形的判定与性质.
作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.
本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.
几何综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )