切线的判定;圆周角定理;解直角三角形.
(1)连接BD、OD,由AB为圆O的直径,利用直径所对的圆周角为直角得到BD与AC垂直,又BA=BC,利用等腰三角形的三线合一性质得到D为AC的中点,又O为AB的中点,可得出OD为三角形ABC的中位线,利用三角形中位线定理得到ODyuBC平行,由EF垂直于BC,得到EF垂直于OD,可得出EF为圆O的切线;
(2)由圆的半径为6,求出直径AB为12,在直角三角形ABD中,由cos∠BAC的值及AB的长,求出AD的长,再由第一问得到D为AC的中点,得到CD=AD,即可求出CD的长.
此题考查了切线的判定,圆周角定理,等腰三角形的性质,三角形的中位线定理,以及锐角三角函数定义,其中切线的证明方法有:有点连接证明垂直;无点作垂线证明垂线段等于圆的半径.
计算题;压轴题.