试题

题目:
青果学院(2012·铜仁地区)如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=
4
5
,求线段AD的长.
答案
(1)证明:∵BF是⊙O的切线,AB是⊙O的直径,
∴BF⊥AB,…3分
∵CD⊥AB,
∴CD∥BF; …6分

(2)解:∵AB是⊙O的直径,
∴∠ADB=90°,…7分
∵⊙O的半径5,
∴AB=10,…8分
∵∠BAD=∠BCD,…10分
∴cos∠BAD=cos∠BCD=
4
5
=
AD
AB

∴AD=cos∠BAD·AB=
4
5
×10=8,
∴AD=8.…12分
(1)证明:∵BF是⊙O的切线,AB是⊙O的直径,
∴BF⊥AB,…3分
∵CD⊥AB,
∴CD∥BF; …6分

(2)解:∵AB是⊙O的直径,
∴∠ADB=90°,…7分
∵⊙O的半径5,
∴AB=10,…8分
∵∠BAD=∠BCD,…10分
∴cos∠BAD=cos∠BCD=
4
5
=
AD
AB

∴AD=cos∠BAD·AB=
4
5
×10=8,
∴AD=8.…12分
考点梳理
切线的性质;圆周角定理;解直角三角形.
(1)由BF是⊙O的切线,AB是⊙O的直径,根据切线的性质,即可得BF⊥AB,又由AB⊥CD,即可得CD∥BF;
(2)又由AB是⊙O的直径,可得∠ADB=90°,由圆周角定理,可得∠BAD=∠BCD,然后由⊙O的半径为5,cos∠BCD=
4
5
,即可求得线段AD的长.
此题考查了切线的性质、平行线的判定、圆周角定理以及三角函数的性质.此题难度适中,注意数形结合思想与转化思想的应用.
压轴题.
找相似题