试题
题目:
(2011·延平区质检)如图,RT△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC的中点,连接DE.
(1)求证:DE为圆的切线;
(2)若BC=5,sin∠C=
3
5
,求AD的长.
答案
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=
1
2
BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆0的切线.
(2)解:∵sin∠C=
3
5
,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)
2
+5
2
=(5x)
2
,
解得x=
5
4
.
AC=5×
5
4
=
25
4
.
由切割线定理可知:5
2
=(
25
4
-AD)
25
4
,
解得,AD=
9
4
.
(1)证明:连接OD、BD,
∵AB为圆O的直径,
∴∠BDA=90°,
∴∠BDC=180°-90°=90°,
∵E为BC的中点,
∴DE=
1
2
BC=BE,
∴∠EBD=∠EDB,
∵OD=OB,
∴∠OBD=∠ODB,
∵∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°,
∴∠ODE=90°,
∴DE是圆0的切线.
(2)解:∵sin∠C=
3
5
,
∴设AB=3x,AC=5x,
根据勾股定理得:(3x)
2
+5
2
=(5x)
2
,
解得x=
5
4
.
AC=5×
5
4
=
25
4
.
由切割线定理可知:5
2
=(
25
4
-AD)
25
4
,
解得,AD=
9
4
.
考点梳理
考点
分析
点评
切线的判定与性质;圆周角定理;解直角三角形.
(1)连接OD、BD,根据圆周角定理求出∠BDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠EBD=∠EDB即可.
(2)根据BC=5,sin∠C=
3
5
,求出AC的长,再根据切割线定理求出AD的长即可.
本题主要考查对勾股定理,等腰三角形的性质,直角三角形斜边上的中线的性质,切线的判定,圆周角定理,锐角三角函数等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )