试题

题目:
(2010·石家庄二模)知识回顾:
(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角形.则S△DEF:S△ABC=
1:4
1:4

(2)如图2,在正方形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,我们把四边形EFGH称为正方形ABCD的中点四边形,此时四边形EFGH的形状是
正方形
正方形
,S四边形EFGH:S四边形ABCD=
1:2
1:2

(3)实践探究:
如图3,在正五边形ABCDE中,若点F、G、H、M、N分别是边AB、BC、CD、DE、EA的中点,则中点五边形FGHMN的形状是
正五边形
正五边形
;若正五边形ABCDE的中心为点O,连接OE、ON,求S五边形FGHMN:S五边形ABCDE的值.
青果学院
(4)拓展归纳:
在正n边形A1A2 …An中,若点B1、B2 …Bn分别是边A1A2、A2A3、…、AnA1的中点,则中点n边形B1B2 …Bn的面积与正n边形A1A2 …An的面积之比为Sn边形B1B2BnSn边形A1A2An=
sin2[
90(n-2)
n
(或cos2(
180
n
sin2[
90(n-2)
n
(或cos2(
180
n

答案
1:4

正方形

1:2

正五边形

sin2[
90(n-2)
n
(或cos2(
180
n

解:(1)1:4;(1分)
(2)正方形;1:2;(3分)
(3)实践探究:正五边形.(4分)
解:设OE交NM于点K,则可得∠ONE=90°,∠OKN=90°,
又∵∠NOE为公共角,
∴△KON∽△NOE.
设△KON的面积为S1,△NOE的面积为S2
S1
S2
=(
ON
OE
)2
.(6分)
∠OEN=
1
2
∠MEN
=
1
2
×
(5-2)×180°
5
=54°

∴∠EON=36°.
S1
S2
=(
ON
OE
)2
=sin254°(或cos236°).
∴S五边形FGHMN:S五边形ABCDE=S1:S2=sin254°(或cos236°)(8分)
(4)拓展归纳:Sn边形B1B2Bn:Sn边形A1A2An=sin2[
90(n-2)
n
(或cos2(
180
n
)(10分)
考点梳理
相似三角形的判定与性质;等边三角形的性质;三角形中位线定理;正方形的性质;正多边形和圆;解直角三角形.
(1)利用三角形的中位线定理即可得到两三角形相似且相似比为1:2,故面积为1:4;
(2)易得四边形EFGH为正方形,且面积等于原正方形的面积的一半;
(3)可以利用全等三角形证得五边形为正五边形,设OE交NM于点K,则可得∠ONE=90°,∠OKN=90°,证得△KON∽△NOE,利用面积的比等于相似比的平方,相似比恰恰是∠EON的余弦值,从而得到结论;
(4)按照(3)总结的规律即可得到∠EON为
180°
n
,从而得到结论.
本题考查了相似三角形的判定及性质、等边三角形的性质、三角形的中位线定理等知识,是一道综合性较强的题目,难度较大.
找相似题