试题

题目:
(2009·卢湾区二模)在等腰△ABC中,已知AB=AC=3,cos∠B=
1
3
,D为AB上一点,过点D作DE⊥AB交BC边于点E,过点青果学院E作EF⊥BC交AC边于点F.
(1)当BD长为何值时,以点F为圆心,线段FA为半径的圆与BC边相切;
(2)过点F作FP⊥AC,与线段DE交于点G,设BD长为x,△EFG的面积为y,求y关于x的函数解析式及其定义域.
答案
青果学院解:(1)过点A作AM⊥BC,垂足为点M,
在Rt△ABM中,cos∠B=
1
3
,AB=3,
∴BM=1.
∵AB=AC,AM⊥BC,
∴BC=2.
设BD长为x,
在Rt△BDE中,cos∠B=
1
3

∴BE=3x,EC=2-3x.
同理FC=6-9x,FE=4
2
-6
2
x.
∴AF=9x-3.
由题意得9x-3=4
2
-6
2
x.
解得x=2
2
-
7
3


(2)∵DE⊥AB,EF⊥BC,青果学院
∴∠B+∠BED=90°,∠DEF+∠BED=90°.
∴∠B=∠DEF.
同理∠EFG=∠C.
∴△ABC∽△EFG.
SEFG
SABC
=(
EF
BC
2
y
2
2
=(
4
2
-6
2
x
2
2
∴y=36
2
x2-48
2
x+16
2

∵△ABC∽△EFG,
∴BC:EF=AB:GE,
∴2:(4
2
-6
2
x)=3:GE,
∴GE=6
2
-9
2
x.
∵在△BDE中,∠BDE=90°,BD=x,BE=3x,
∴DE=2
2
x.
∴DG=DE-GE=2
2
x-(6
2
-9
2
x)=11
2
x-6
2

∵点G在线段DE上,EG为△EFG的一条边,
∴DG≥0,且EG>0,
∴11
2
x-6
2
≥0,且6
2
-9
2
x>0,
解得
6
11
≤x<
2
3

青果学院解:(1)过点A作AM⊥BC,垂足为点M,
在Rt△ABM中,cos∠B=
1
3
,AB=3,
∴BM=1.
∵AB=AC,AM⊥BC,
∴BC=2.
设BD长为x,
在Rt△BDE中,cos∠B=
1
3

∴BE=3x,EC=2-3x.
同理FC=6-9x,FE=4
2
-6
2
x.
∴AF=9x-3.
由题意得9x-3=4
2
-6
2
x.
解得x=2
2
-
7
3


(2)∵DE⊥AB,EF⊥BC,青果学院
∴∠B+∠BED=90°,∠DEF+∠BED=90°.
∴∠B=∠DEF.
同理∠EFG=∠C.
∴△ABC∽△EFG.
SEFG
SABC
=(
EF
BC
2
y
2
2
=(
4
2
-6
2
x
2
2
∴y=36
2
x2-48
2
x+16
2

∵△ABC∽△EFG,
∴BC:EF=AB:GE,
∴2:(4
2
-6
2
x)=3:GE,
∴GE=6
2
-9
2
x.
∵在△BDE中,∠BDE=90°,BD=x,BE=3x,
∴DE=2
2
x.
∴DG=DE-GE=2
2
x-(6
2
-9
2
x)=11
2
x-6
2

∵点G在线段DE上,EG为△EFG的一条边,
∴DG≥0,且EG>0,
∴11
2
x-6
2
≥0,且6
2
-9
2
x>0,
解得
6
11
≤x<
2
3
考点梳理
解直角三角形;等腰三角形的性质;相似三角形的判定与性质.
(1)过点A作AM⊥BC,垂足为点M,根据已知可求得BC的长,再根据三角函数即可求得BD的长.
(2)根据已知可得到△ABC∽△EFG,根据相似三角形的面积比等于相似比的平方即可求得函数解析式.
本题主要考查了等腰三角形的性质,相似三角形的性质以及解直角三角形的应用等知识点,弄清各边之间的关系是解题的关键.
综合题;压轴题.
找相似题