试题

题目:
青果学院如图,在△ABC中,∠C=90°,sinB=
3
5
,AD平分∠CAB,那么sin∠CAD=
5
5
5
5

答案
5
5

青果学院解:过D点作DE⊥AB于E.
∵∠C=90°,
∴∠C=∠DEA.
∵AD平分∠CAB,
∴∠CAD=∠EAD.
∵AD=AD,
∴△CAD≌△EAD,
∴AE=AC.
∵sinB=
3
5
,∴tanB=
3
4

设AC=3x,则AB=5x,
AE=3x,
BE=5x-3x=2x,
DE
BE
=tanB,
DE=1.5x,
∴AD=
AE2+DE2
=
3
5
2
x.
∴sin∠CAD=sin∠EAD=
DE
AD
=
5
5
考点梳理
解直角三角形.
过D点作DE⊥AB于E,通过证明△CAD≌△EAD可知AE=AC,再根据sinB的值找到DE,AD的关系,从而求得sin∠CAD的值.
本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.
找相似题