答案

(1)证明:如图,连接PC.
∵AC=1,BD=1,
∴AC=BD.
∵∠BAC=120°,AP平分∠BAC,
∴∠1=
∠BAC=60°.
∵△PAD是等边三角形,
∴PA=PD,∠D=60°.
∴∠1=∠D.
∴△PAC≌△PDB.
∴PC=PB,∠2=∠3.
∴∠2+∠4=∠3+∠4,∠BPC=∠DPA=60°.
∴△PBC是等边三角形,BC=BP.

(2)解:如图,作CE⊥PB于E,PF⊥AB于F.
∵AB=3,BD=1,
∴AD=4.
∴△PAD是等边三角形,PF⊥AB,
∴DF=
AD=2,PF=PD·sin60°=
2.
∴BF=DF-BD=1,
∴BP=
=.
∴CE=BC·sin60°=BP·sin60°=
×
=
.
即点C至BP的距离等于
.

(1)证明:如图,连接PC.
∵AC=1,BD=1,
∴AC=BD.
∵∠BAC=120°,AP平分∠BAC,
∴∠1=
∠BAC=60°.
∵△PAD是等边三角形,
∴PA=PD,∠D=60°.
∴∠1=∠D.
∴△PAC≌△PDB.
∴PC=PB,∠2=∠3.
∴∠2+∠4=∠3+∠4,∠BPC=∠DPA=60°.
∴△PBC是等边三角形,BC=BP.

(2)解:如图,作CE⊥PB于E,PF⊥AB于F.
∵AB=3,BD=1,
∴AD=4.
∴△PAD是等边三角形,PF⊥AB,
∴DF=
AD=2,PF=PD·sin60°=
2.
∴BF=DF-BD=1,
∴BP=
=.
∴CE=BC·sin60°=BP·sin60°=
×
=
.
即点C至BP的距离等于
.