试题
题目:
已知四边形ABCD,AB∥CD,且AB=AC=AD=a,BC=b,且2a>b.求cos∠DBA的值.
答案
解:以A为圆心,以a为半径作圆.延长BA交⊙A于E点,连接ED;(1分)
∵AB∥CD,
∴∠CAB=∠DCA,∠DAE=∠CDA;
∵AC=AD,∴∠DCA=∠CDA,
∴∠DAE=∠CAB;(2分)
在△ABC和△DAE中,
AD=AC
∠DAE=∠CAB
AE=AB
;
∴△CAB≌△DAE,(3分)
∴ED=BC=b(4分)
∵BE是直径,
∴∠EDB=90°
在Rt△EDB中,
ED=b,BE=2a,
由勾股定理得ED
2
+BD
2
=BE
2
∴
BD=
B
E
2
-E
D
2
=
(2a)
2
-
b
2
=
4
a
2
-
b
2
(5分)
∴
cos∠DBA=
BD
BE
=
4
a
2
-
b
2
2a
.(6分)
解:以A为圆心,以a为半径作圆.延长BA交⊙A于E点,连接ED;(1分)
∵AB∥CD,
∴∠CAB=∠DCA,∠DAE=∠CDA;
∵AC=AD,∴∠DCA=∠CDA,
∴∠DAE=∠CAB;(2分)
在△ABC和△DAE中,
AD=AC
∠DAE=∠CAB
AE=AB
;
∴△CAB≌△DAE,(3分)
∴ED=BC=b(4分)
∵BE是直径,
∴∠EDB=90°
在Rt△EDB中,
ED=b,BE=2a,
由勾股定理得ED
2
+BD
2
=BE
2
∴
BD=
B
E
2
-E
D
2
=
(2a)
2
-
b
2
=
4
a
2
-
b
2
(5分)
∴
cos∠DBA=
BD
BE
=
4
a
2
-
b
2
2a
.(6分)
考点梳理
考点
分析
点评
圆周角定理;全等三角形的判定与性质;解直角三角形.
欲求∠DBA的余弦值,需将已知条件构建到一个直角三角形中求解;已知四边形ABCD中,AB=AC=AD;若以A为圆心,AB为半径作圆,则此圆必过C、D;延长BA交⊙A于E,则BE为⊙A的直径,连接DE,在Rt△BDE中,已知了BE=2a,需求出BD的长;根据DC∥AB,易证得DE=BC=b,则根据勾股定理即可求得BD的长,由此得解.
此题主要考查了圆周角定理、勾股定理以及全等三角形的判定;能够通过辅助线构建出⊙A是解答本题的关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )