试题
题目:
如图,过⊙O外一点A引切线AB、AC,B、C为切点,若∠BAC=60°,BC=8cm,则⊙O的直径是
16
3
3
16
3
3
cm.
答案
16
3
3
解:如图,连接OB、OA,则∠OBA=90°.
∵AB、AC分别切⊙O于B、C,
∴AB=AC,∠BAO=∠CAO=
1
2
∠BAC=30°.
∴OA垂直平分BC.
在Rt△OBD中,BD=
1
2
BC=4cm,∠BOD=60°,
∴OB=BD÷sin60°=
8
3
3
.
故⊙O的直径是
16
3
3
cm.
考点梳理
考点
分析
点评
切线长定理;解直角三角形.
连接OB、OA,设OA与BC相交于点D.首先由切线长定理求得∠BAO的度数,即可得出∠BOA的度数;进而可在Rt△OBD中,根据BD的长以及∠BOA的度数,求出OB的长,即可求得⊙O的直径.
此题主要考查了切线长定理、等腰三角形的性质、解直角三角形的应用等知识.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )