试题
题目:
如图,平面直角坐标系xOy中,点A(2,0),以OA为半径作⊙O,若点P,B都在⊙O上,且四边形AOPB为菱形,则点P的坐标为
(-1,
3
)
,
(-1,-
3
)
(-1,
3
)
,
(-1,-
3
)
.
答案
(-1,
3
)
,
(-1,-
3
)
解:∵四边形AOPB为菱形
∴OP=PB=AB=OB,
∵OP=OB,
∴△POB,△AOB是等边三角形,
∴∠POM=180°-60°×2=60°,
∴OM=OP·cos∠POM=1,PM=OP·sin∠POM=
3
.
当点P在x轴的上方时,P的坐标为(-1,
3
);
当点P在x轴的下方时,P的坐标为(-1,-
3
).
故答案为:(-1,
3
),或(-1,-
3
).
考点梳理
考点
分析
点评
专题
解直角三角形;坐标与图形性质;菱形的性质.
根据菱形的性质可知△POB,△AOB是等边三角形,从而得出∠POM=180°-60°×2=60°,再根据三角函数即可求出OM,PM的长度,得到点P的坐标,注意点P可以在x轴的上方和下方.
本题考查了菱形的性质,等边三角形的性质和三角函数,同时注意分类思想的运用.
综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )