试题
题目:
小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过 点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,这样就可以求出
tan67.5°=
2
+1
2
+1
.
答案
2
+1
解:∵将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,
∴AB=BE,∠AEB=∠EAB=45°,
∵还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,
∴AE=EF,∠EAF=∠EFA=
45°
2
=22.5°,
∴∠FAB=67.5°,
设AB=x,
则AE=EF=
2
x,
∴tan∠FAB=tan67.5°=
FB
AB
=
2
x+x
x
=
2
+1.
故答案为:
2
+1.
考点梳理
考点
分析
点评
翻折变换(折叠问题);解直角三角形.
根据翻折变换的性质得出AB=BE,∠AEB=∠EAB=45°,∠FAB=67.5°,进而得出tan∠FAB=tan67.5°=
FB
AB
得出答案即可.
此题主要考查了翻折变换的性质,根据已知得出∠FAB=67.5°以及AE=EF是解题关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )