题目:
(2008·海珠区一模)如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边△AOB,

点C为x轴的正半轴上一动点(OC>2),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.
答案
解:(1)△OBC≌△ABD.(1分)
理由:∵△AOB和△CBD是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,(3分)
即∠OBC=∠ABD,
在△OBC和△ABD中,
,
∴△OBC≌△ABD(SAS).(5分)
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,(8分)
∴Rt△OEA中,AE=2OA=4,
∴OE=
=2
,
∴点E的位置不会发生变化,E的坐标为E(0,2
).(10分)
解:(1)△OBC≌△ABD.(1分)
理由:∵△AOB和△CBD是等边三角形,
∴OB=AB,∠OBA=∠OAB=60°,
BC=BD,∠CBD=60°,
∴∠OBA+∠ABC=∠CBD+∠ABC,(3分)
即∠OBC=∠ABD,
在△OBC和△ABD中,
,
∴△OBC≌△ABD(SAS).(5分)
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=60°,
又∵∠OAB=60°,
∴∠OAE=180°-∠OAB-∠BAD=60°,(8分)
∴Rt△OEA中,AE=2OA=4,
∴OE=
=2
,
∴点E的位置不会发生变化,E的坐标为E(0,2
).(10分)