试题
题目:
(2010·虹口区一模)将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B',折痕为EF.已知AB=AC=2,
cosC=
3
4
,若以点B'、F、C为顶点的三角形与△ABC相似,那么BF的长度是
6
5
6
5
.
答案
6
5
解:作AH⊥BC,垂足为H,在Rt△ACH中,CH=AC·cosC=
3
2
,
∵AB=AC,∴BC=2CH=3,
∵以点B'、F、C为顶点的三角形与△ABC相似,
∴B′F=B′C,∴FB′∥AB,
∴∠B′FE=∠FEB,
由折叠的性质可知,∠B′FE=∠BFE,∠FEB=∠FEB′,
∴四边形BFB′E为菱形,
设BF=x,则B′F=B′C=B′E=x,AB′=2-x,
∵B′E∥BC,∴△AEB′∽△ABC,
∴
B′E
BC
=
AB′
AC
,即
x
3
=
2-x
2
,解得x=
6
5
.
故答案为:
6
5
.
考点梳理
考点
分析
点评
翻折变换(折叠问题);相似三角形的性质;解直角三角形.
作AH⊥BC,利用解直角三角形求BC,由已知得△ABC为等腰三角形,以点B'、F、C为顶点的三角形与△ABC相似,则△B'FC为等腰三角形,可知FB′∥AB,利用平行线的性质,折叠的性质可证四边形BFB′E为菱形,利用B′E∥BC,得到相似三角形,用相似比求解.
本题考查了折叠的性质,相似三角形的判定与性质,解直角三角形.关键是利用折叠与相似得出菱形.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )