试题
题目:
如图,⊙C通过原点,并与坐标轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则点C的坐标为
(-
3
3
,1)
(-
3
3
,1)
.
答案
(-
3
3
,1)
解:连接AD,过点C作CE⊥OA,
∴AD为直径,
∵∠OBA=30°,
∴∠ADO=30°,∠OAC=60°,
∴OA=
1
2
AD,OA=OC,
∵点D的坐标为(0,2),
∴OA
2
+OD
2
=AD
2
,
∴OA=
2
3
3
,
∴OE=
3
3
,
∴点C的坐标为(-
3
3
,1).
考点梳理
考点
分析
点评
专题
圆周角定理;坐标与图形性质;解直角三角形.
连接AD,则AD为直径,根据同弧所对的圆周角相等,可得出∠ADO=30°,再根据点D的坐标为(0,2),即可得出点C的坐标.
本题考查了圆周角定理、坐标与图形的性质、解直角三角形,是基础知识要熟练掌握.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )