答案
解:(1)过D作DM⊥CB,垂足为M,

∴∠DMB=90°,
∵∠A=∠B=90°,
∴四边形ABMD为矩形,
∵AB=AD,
∴四边形ABMD为正方形,
∴AD=MD,
∵DE⊥DC,∴∠CDE=90°,
∴∠CDM+∠MDE=90°,
又∵∠EDA+∠MDE=90°,
∴∠CDM=∠EDA,
在△CDM和△EDA中,
| ∠CDM=∠EDA | DM=DA | ∠DMC=∠DAE=90° |
| |
,
∴△CDM≌△EDA(ASA),
∴CD=ED,
在△CFD和△EFD中,
,
∴△CFD≌△EFD(SSS),
∴∠CDF=∠EDF;
(2)∵正方形ABMD的边长为6,∴AD=AB=MB=DM=6,
∵△CDM≌△EDA,
∴AE=CM,∠CDM=∠EDA,
∴tan∠CDM=tan∠ADE=
,
在Rt△CDM中,tan∠CDM=
=
,
∴AE=CM=2,CB=CM+MB=2+6=8,
设CF=EF=x,FB=8-x,EB=AB-AE=4,
在Rt△EFB中,根据勾股定理得:EF
2=FB
2+EB
2,
即x
2=(8-x)
2+4
2,解得:x=5,
则EF=5.
解:(1)过D作DM⊥CB,垂足为M,

∴∠DMB=90°,
∵∠A=∠B=90°,
∴四边形ABMD为矩形,
∵AB=AD,
∴四边形ABMD为正方形,
∴AD=MD,
∵DE⊥DC,∴∠CDE=90°,
∴∠CDM+∠MDE=90°,
又∵∠EDA+∠MDE=90°,
∴∠CDM=∠EDA,
在△CDM和△EDA中,
| ∠CDM=∠EDA | DM=DA | ∠DMC=∠DAE=90° |
| |
,
∴△CDM≌△EDA(ASA),
∴CD=ED,
在△CFD和△EFD中,
,
∴△CFD≌△EFD(SSS),
∴∠CDF=∠EDF;
(2)∵正方形ABMD的边长为6,∴AD=AB=MB=DM=6,
∵△CDM≌△EDA,
∴AE=CM,∠CDM=∠EDA,
∴tan∠CDM=tan∠ADE=
,
在Rt△CDM中,tan∠CDM=
=
,
∴AE=CM=2,CB=CM+MB=2+6=8,
设CF=EF=x,FB=8-x,EB=AB-AE=4,
在Rt△EFB中,根据勾股定理得:EF
2=FB
2+EB
2,
即x
2=(8-x)
2+4
2,解得:x=5,
则EF=5.