切线的判定;解直角三角形.
(1)连接OD,由于AD∥OC,OA=OD=OB,那么∴∠BOC=∠DAB=∠CDO=∠DOC,而OD=OB,OC=OC,利用SAS可证△ODC≌△OBC,又BC⊥AB,故∠B=90°,所以∠ODC=90°,即CD是⊙O的切线;
(2)在△ADG中SinA=
=,可先设DG=4x,AD=5x,根据垂径定理可知AB⊥DF,即∠AGD=90°,再利用勾股定理可求AG=3x,那么OG=5-3x,在Rt△DGO中,利用勾股定理可得(
)
2=(4x)
2+(
-3x)
2,解得x
1=
,x
2=0(舍去),那么DG=
,则DF=
.
本题利用了等边对等角、平行线的性质、全等三角形的判定和性质、切线的判定、三角函数值、解一元二次方程、勾股定理.
计算题;证明题.