试题
题目:
如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,CA为半径的圆交斜边于D,则BD的长为
7
5
7
5
cm.
答案
7
5
解:连接CD.
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,
∴AB=5(勾股定理),
cos∠B=
BC
AB
=
4
5
,即cos∠B=
4
5
①,
在△BCD中,cosB=
BD
2
+
BC
2
-
CD
2
2BD·BC
=
BD
2
+16-9
2×BD×4
(余弦定理)即cosB=
BD
2
+7
8BD
②,
由①②,解得BD=5(舍去,BD<AB)或BD=
7
5
,
∴BD的长为
7
5
cm.
考点梳理
考点
分析
点评
解直角三角形.
根据题中所给的条件,在直角三角形中解题,根据三角形两直角边,利用勾股定理,求得斜边AB的长,再利用余弦定理求得cosB的值.再在△BCD中利用余弦定理求得BD的长.
本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )