试题
题目:
如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠EBC=30°,∠BEC=90°,EF=8cm,则矩形的面积为
64
3
cm
2
64
3
cm
2
.
答案
64
3
cm
2
解:∵F是BC中点,∠BEC=90°,
∴EF=BF=FC,BC=2EF=2×8=16cm,
∵∠EBC=30°,
∴∠BCE=90°-∠EBC=90°-30°=60°,
∴△CEF是等边三角形,
过点E作EG⊥CF于G,
则EG=
3
2
EF=
3
2
×8=4
3
cm,
∴矩形的面积=16×4
3
=64
3
cm
2
.
故答案为:64
3
cm
2
.
考点梳理
考点
分析
点评
矩形的性质;直角三角形斜边上的中线;解直角三角形.
根据直角三角形斜边上的中线等于斜边的一半求出BC,再根据直角三角形两锐角互余求出∠BCE=60°,判断出△CEF是等边三角形,过点E作EG⊥CF于G,根据等边三角形的性质求出EG,然后根据矩形的面积公式列式进行计算即可得解.
本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,直角三角形两锐角互余的性质,求出矩形的宽是解题的关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )