试题

题目:
已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,
∠ABE=∠DBM.
(1)如图1,当∠ABC=45°时,求证:AE=
2
MD;
(2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为
AE=2MD
AE=2MD

(3)在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=2
7
,求tan∠PCB和tan∠ACP的值.
青果学院
答案
AE=2MD

青果学院解:(1)证明:如图1,连接AD.
∵AB=AC,BD=CD,
∴AD⊥BC.
又∵∠ABC=45°,
∴BD=AB·cos∠ABC,
即AB=
2
BD.…(1分)
∵∠BAE=∠BDM,∠ABE=∠DBM,
∴△ABE∽△DBM.…(2分)
AE
DM
=
AB
DB
=
2

∴AE=
2
MD.…(3分)

(2)∵cos∠ABC=cos60°=
1
2

∴MD=AE·cos∠ABC=AE·
1
2
,…(4分)
∴AE=2MD;…(5分)

(3)如图2,连接AD,EP.
∵AB=AC,∠ABC=60°,
∴△ABC是等边三角形.…(6分)
又∵D为BC的中点,
∴AD⊥BC,∠DAC=30°,BD=DC=
1
2
AB.
∵∠BAE=∠BDM,∠ABE=∠DBM,
∴△ABE∽△DBM.…(7分)
BE
BM
=
AB
DB
=2
,∠AEB=∠DMB.
∴EB=2BM.
又∵BM=MP,
∴EB=BP.
∵∠EBM=∠ABC=60°,
∴△BEP为等边三角形,…(8分)
∴EM⊥BP,
∴∠BMD=90°
∴∠AEB=90°
在Rt△AEB中,AE=2
7
,AB=7,
∴BE=
AB2-AE2
=
21

∴tan∠EAB=
3
2
.…(9分)
∵D为BC中点,M为BP中点,
∴DM∥PC.
∴∠MDB=∠PCB,
∴∠EAB=∠PCB.
∴tan∠PCB=
3
2
.…(10分)
在Rt△ABD中,AD=AB·sin∠ABD=
7
3
2

在Rt△NDC中,ND=DC·tan∠NCD=
7
3
4

∴NA=AD-ND=
7
3
4
.…(11分)
过N作NH⊥AC,垂足为H.
在Rt△ANH中,NH=
1
2
AN=
7
3
8
,AH=AN·cos∠NAH=
21
8

∴CH=AC-AH=
35
8

∴tan∠ACP=
3
5
.…(12分)
考点梳理
相似三角形的判定与性质;等边三角形的判定与性质;勾股定理;解直角三角形.
(1)首先连接AD,由AB=AC,∠ABC=45°,易得AB=
2
BD,又由∠BAE=∠BDM,∠ABE=∠DBM,可证得△ABE∽△DBM,根据相似三角形的对应边成比例,即可得AE=
2
MD;
(2)由∠ABC=60°,即可求得MD=
1
2
AE,继而可得AE=2MD;
(3)首先连接AD,EP,根据题意易证得△ABC是等边三角形,△ABE∽△DBM,继而可证得△BEP为等边三角形,然后在Rt△AEB中,利用勾股定理即可求得BE的长,然后利用三角函数的性质,即可求得tan∠PCB和tan∠ACP的值.
此题考查了相似三角形的判定与性质、勾股定理、等边三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,解题的关键是准确作出辅助线,掌握转化思想与数形结合思想的应用.
压轴题.
找相似题