试题
题目:
(2011·浦东新区二模)已知在等腰梯形ABCD中,AD∥BC,AB=AD=CD,AC⊥AB,那么cotB=
3
3
3
3
.
答案
3
3
解:∵AB=AD=CD,
∴∠ABC=∠BCD,∠DAC=∠ACD,
∵AD∥BC,
∴∠DAC=∠ACB,
∴∠ACD=∠ACB,
∴∠ABC=2∠ACB,
∵AC⊥AB,
∴∠ABC=60°,
∴cotB=
3
3
.
故答案为:
3
3
.
考点梳理
考点
分析
点评
专题
解直角三角形;等腰梯形的性质.
利用三角形内角和计算可得∠B的度数,也就求得了cotB.
综合考查了等腰梯形及解直角三角形的知识;判断出∠B的度数是解决本题的关键.
数形结合.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )