试题
题目:
(2011·兴国县模拟)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,作BD⊥AC于点D,OM⊥AB于点M.sin∠CBD=
1
3
.则OM=
1
3
1
3
.
答案
1
3
解:连接AO并延长,交圆O于点N,连接BN.
∵AN是直径,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB=
BN
AN
=sin∠CBD=
1
3
,
∴NB=AN·sin∠CBD=
2
3
,
∵OM⊥AB,
∴AM=BM,
又∵OA=ON,
∴OM是△ABN的中位线.
∴OM=
1
2
NB=
1
3
.
故答案为:
1
3
.
考点梳理
考点
分析
点评
专题
圆周角定理;解直角三角形.
连接AO并延长,交圆O于点N,连接BN,则OM是△ABN的中位线,根据圆周角定理即可证明∠NAB=∠CBD,即可求得NB的长,根据三角形中位线定理即可求解.
本题主要考查了三角形中位线定理,正确作出辅助线,利用等弧所对的圆周角相等把sin∠CBD=
1
3
进行转化是解题的关键.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )