试题

题目:
青果学院(2011·兴国县模拟)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,作BD⊥AC于点D,OM⊥AB于点M.sin∠CBD=
1
3
.则OM=
1
3
1
3

答案
1
3

青果学院解:连接AO并延长,交圆O于点N,连接BN.
∵AN是直径,
∴∠ABN=90°,
∴∠ABN=∠CDB,
又∵∠C=∠N,
∴∠NAB=∠CBD,
∴sin∠NAB=
BN
AN
=sin∠CBD=
1
3

∴NB=AN·sin∠CBD=
2
3

∵OM⊥AB,
∴AM=BM,
又∵OA=ON,
∴OM是△ABN的中位线.
∴OM=
1
2
NB=
1
3

故答案为:
1
3
考点梳理
圆周角定理;解直角三角形.
连接AO并延长,交圆O于点N,连接BN,则OM是△ABN的中位线,根据圆周角定理即可证明∠NAB=∠CBD,即可求得NB的长,根据三角形中位线定理即可求解.
本题主要考查了三角形中位线定理,正确作出辅助线,利用等弧所对的圆周角相等把sin∠CBD=
1
3
进行转化是解题的关键.
计算题.
找相似题