试题

题目:
青果学院(2012·永嘉县一模)如图,C是线段BE上一点,四边形ABCD是正方形,四边形DEFG也是正方形,BE和GF的延长线相交于点H,连接AG,若正方形ABCD的面积16,正方形DEFG的面积为36,则图中三个阴影三角形的面积之和等于
17
5
17
5

答案
17
5

解:过G作GM⊥AD交AD的延长线与M,如图,青果学院
∵正方形ABCD的面积16,正方形DEFG的面积为36,
∴DG=DE=EF=6,DC=4,
在Rt△DCE中,CE=
DE2-CE2
=2
5

∵∠1+∠2=90°,∠1+∠3=90°,
∴∠2=∠3,
又∵∠3=∠4,
∴∠2=∠4,
∴Rt△DEC≌Rt△DGM,
∴GM=CE;
∵∠5=∠6,
∴Rt△DCE∽Rt△DFH,
∴CE:FH=DC:EF,即2
5
:FH=4:6,
∴FH=3
5

∴S三个阴影三角形的面积=
1
2
AD·GM+
1
2
DC·CE+
1
2
EF·FH
=
1
2
×4×2
5
×2+
1
2
×6×3
5

=17
5

故答案为17
5
考点梳理
解直角三角形.
过G作GM⊥AD交AD的延长线与M,根据正方形的性质得到DG=DE=EF=6,DC=4,利用勾股定理计算出CE=2
5
,易证Rt△DEC≌Rt△DGM,得到GM=CE;易证得Rt△DCE∽Rt△DFH,则CE:FH=DC:EF,即2
5
:FH=4:6,求得FH=3
5
,于是有S三个阴影三角形的面积=
1
2
AD·GM+
1
2
DC·CE+
1
2
EF·FH,代值计算即可.
本题考查了相似三角形的判定与性质:有一组锐角对应相等的两直角三角形相似;相似三角形对应边的比相等.也考查了全等三角形的判定与性质、勾股定理以及正方形的性质.
找相似题