试题
题目:
如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD、BE得到Rt△ABC,已知CD=2、DE=1,求Rt△ABC的面积.
答案
解:∵∠ADE=∠B=60°(同角的余角相等),DE=1,
∴AD=2(含30度角的直角三角形的性质),
∴AC=AD+DC=4(等量关系),
在Rt△ABC中,
BC=
AC
3
=
4
3
3
(正切的定义),
∴Rt△ABC的面积=
1
2
AC·BC=
8
3
3
.
解:∵∠ADE=∠B=60°(同角的余角相等),DE=1,
∴AD=2(含30度角的直角三角形的性质),
∴AC=AD+DC=4(等量关系),
在Rt△ABC中,
BC=
AC
3
=
4
3
3
(正切的定义),
∴Rt△ABC的面积=
1
2
AC·BC=
8
3
3
.
考点梳理
考点
分析
点评
专题
含30度角的直角三角形;解直角三角形.
∠ADE=∠B=60°,DE=1,可求出AD的长,即为得出AC和BC的长,从而求出Rt△ABC的面积.
本题考查了含30度角的直角三角形和解直角三角形的知识,难度不大,注意掌握含30度角的直角三角形的性质是关键.
数形结合.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )