试题
题目:
如图所示,在直线AB上有一点C,过点A作AE⊥AB,垂足为A,过点B作BF⊥AB,垂足为B,且AE=BC,BF=AC,连接EF.
(1)求证:△AEC≌△BCF;
(2)若AE=2,tan∠CFB=
1
2
,求EF的长.
答案
(1)证明:∵EA⊥AB,BF⊥AB
∴∠EAC=∠FBC=90°…(1分)
在Rt△EAC与Rt△CBF中,
AE=BC
∠EAC=∠CBF
AC=BF
…(3分)
∴Rt△AEC≌Rt△BCF;
(2)解:∵△AEC≌△BCF,
∴AE=2=BC,∠CFB=∠ECA
∴
tan∠ECA=
1
2
,
∴2AE=AC=4,
∴
EC=CF=2
5
…(7分),
∵∠EAC+∠ECA=90°,∠AEC=∠FCB,
∴∠ECA+∠FCB=90°,
∴∠ECF=90°,
在Rt△ECF中,
EC=CF=2
5
,
∴
EF=2
10
.
(1)证明:∵EA⊥AB,BF⊥AB
∴∠EAC=∠FBC=90°…(1分)
在Rt△EAC与Rt△CBF中,
AE=BC
∠EAC=∠CBF
AC=BF
…(3分)
∴Rt△AEC≌Rt△BCF;
(2)解:∵△AEC≌△BCF,
∴AE=2=BC,∠CFB=∠ECA
∴
tan∠ECA=
1
2
,
∴2AE=AC=4,
∴
EC=CF=2
5
…(7分),
∵∠EAC+∠ECA=90°,∠AEC=∠FCB,
∴∠ECA+∠FCB=90°,
∴∠ECF=90°,
在Rt△ECF中,
EC=CF=2
5
,
∴
EF=2
10
.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;解直角三角形.
(1)由于AE⊥AB,BF⊥AB可以得到∠EAC=∠FBC=90°,而AE=BC,BF=AC,利用边角边即可解决问题;
(2)利用(1)的结论得到BC=2,∠CFB=∠ECA,接着利用三角函数的定义求出CE,最后利用勾股定理和已知条件即可求解.
此题主要考查了全等三角形的判定与性质,同时也利用了三角函数的定义,解题的关键是全等三角形的判定和性质.
综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )