试题
题目:
在△ABC中,若AB=AC,中线AD=
3
,cosB=
3
2
,则△ABC的周长为( )
A.
4+6
3
B.
6+4
3
C.
6+6
3
D.以上都不对
答案
B
解:∵AB=AC,中线AD=
3
,
∴AD⊥BC,
∵cosB=
3
2
,
∴∠B=30°,
∴AB=2AD=2
3
,
∴BD=2
3
×cos30°=3,
∴BC=3×2=6,AB=AC=2
3
,
∴△ABC的周长为:6+2
3
+2
3
=6+4
3
.
故选:B.
考点梳理
考点
分析
点评
解直角三角形.
根据等腰三角形的性质得出AD⊥BC,进而得出∠B=30°,再利用锐角三角函数关系求出BD的长,进而得出BC的长,即可得出答案.
此题主要考查了解直角三角形和等腰三角形的性质等知识,根据已知得出AB的长是解题关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )