试题
题目:
已知:如图,在矩形ABCD中,AE⊥BD于E,对角线AC、BD相交于点O,且BE:ED=1:3,AB=6cm,则AC的长度为
12
12
cm.
答案
12
解:设BE=x,则ED=3x,
∵∠ABE+∠BAE=90°,
∠ABD+∠ADB=90°,
∴∠BAE=∠ADE,
∵∠AEB=∠AED,
∴△ABE∽△DBA,
∴
BE
AB
=
AB
BD
,
∴AB
2
=BE×BD,
即36=x(x+3x),
解得x=3,BD=3×(1+3)=12,
故AC=BD=12.
考点梳理
考点
分析
点评
专题
矩形的性质;射影定理;解直角三角形.
根据相似三角形的判断得出△ABE∽△DBA解答即可.
本题涉及到相似三角形的判定与性质,也可以利用直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项得出.
计算题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )