圆内接四边形的性质;三角形的面积;等腰三角形的性质;圆周角定理;相似三角形的判定与性质;解直角三角形.
连接AE.根据圆周角定理易知AE⊥BC;
由于△ABC是等腰△,根据等腰三角形三线合一的性质知E是BC的中点,即CE=BE=1.
在Rt△ABE中,根据勾股定理即可求出AE的长,进而可求出△ABC的面积.
根据圆内接四边形的外角等于内对角,可得出△CDE和△CBA的两组对应角相等,由此可判定两个三角形相似,已知了CE、AC的长,也就知道了两个三角形的相似比,根据相似三角形的面积比等于相似比的平方即可求得△CDE的面积.
此题主要考查了圆周角定理、等腰三角形的性质、勾股定理、相似三角形的判定和性质等知识的综合应用.