试题

题目:
青果学院(2013·荆门模拟)如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )



答案
D
青果学院解:如图所示:连接AC,过圆心O′作EF⊥OA,
∵∠AOC=90°,∠ABO=∠OCA,
AO
AC
=
4
5

∵点A(8,0),
∴AC=10,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴MF=2,
∴F点坐标为:(4,-2),
设过O,A,F的抛物线解析式为:y=a(x-4)2-2,
将A代入(8,0)得:
0=a(8-4)2-2,
解得:a=
1
8

∴此时抛物线解析式为:y=
1
8
(x-4)2-2=
1
8
x2-x,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴ME=8,
∴E点坐标为:(4,8),
设过O,A,E的抛物线解析式为:y=a(x-4)2+8,
将A代入(8,0)得:
0=a(8-4)2+8,
解得:a=-
1
2

∴此时抛物线解析式为:y=-
1
2
(x-4)2+8=-
1
2
x2+x,
故选:D.
考点梳理
待定系数法求二次函数解析式;圆周角定理;解直角三角形.
根据圆周角定理以及勾股定理和垂径定理得出E,F点着的坐标,进而利用顶点式求出抛物线解析式即可.
此题主要考查了利用顶点式求抛物线解析式以及垂径定理、圆周角定理、勾股定理的应用,根据已知得出E,F点坐标是解题关键.
找相似题