试题
题目:
(2004·杭州)如图,三个半径为
3
的圆两两外切,且△ABC的每一边都与其中的两个圆相切,那么△ABC的周长是( )
A.12+6
3
B.18+6
3
C.18+12
3
D.12+12
3
答案
B
解:如图.连接AR、RS、RW、DF、DE,由题意知,△ABC是等边三角形,∠EDB=60°,BD是∠EBF的平分线,
∴∠DBE=30°,BE=BF=DEcot30°=3,
同理,AW=AS=CG=CH=3,四边形WFDR,SGTR,THED是矩形,WF=SG=EH=DT=2
3
,
∴△ABC的周长=6BE+3EH=18+6
3
.
故选B.
考点梳理
考点
分析
点评
专题
相切两圆的性质;等边三角形的判定与性质;切线长定理;解直角三角形.
从各圆心向边作垂线,由题意知△ABC是等边三角形,BD是∠EBF的平分线,可求得BE=BF=DEcot30°=3,AW=AS=CG=CH=3;再根据四边形WFDR,SGTR,THED是矩形,WF=SG=EH=DT=2
3
,从而求得△ABC的周长.
本题考查了切线长定理、等边三角形的判定和性质等知识点.
综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )