试题
题目:
(2010·双鸭山)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sinB=
1
3
,则线段AC的长是( )
A.3
B.4
C.5
D.6
答案
B
解:连接CD,则∠DCA=90°.
Rt△ACD中,sinD=sinB=
1
3
,AD=12.
则AC=AD·sinD=12×
1
3
=4.
故选B.
考点梳理
考点
分析
点评
圆周角定理;解直角三角形.
连接CD,由圆周角定理可得到两个条件:①∠D=∠B,②∠DCA=90°;
在Rt△ACD中,根据∠D的正弦值及斜边AD的长即可求出AC的值.
此题主要考查了圆周角定理及解直角三角形的应用,能够将已知和所求条件构建到一个直角三角形中,是解答此题的关键.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2012·内江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=
2
3
,则阴影部分图形的面积为( )
(2012·聊城)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=-x分别交于A
1
,A
2
,A
3
,A
4
…,则点A
30
的坐标是( )
(2012·广元)如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为( )
(2011·枣庄)如图,PA是⊙O的切线,切点为A,PA=2
3
,∠APO=30°,则⊙O的半径为( )