答案
解:(1)已知原抛物线经过原点O(0,0)与A(4,0)点,
因此可设原抛物线的表达式为y=ax(x-4).(1分)
配方得y=a(x-2)
2-4a,则其顶点B的坐标为(2,-4a).(2分)
因为顶点B在直线y=kx+2k(k≠0)上,将(2,-4a)代入可得k=-a.(3分)
由题意可知平移后得到的抛物线的顶点B'的坐标为(2+m,-4a+m),即(2+m,4k+m).
因为B'点仍然在直线y=kx+2k上,则4k+m=k(2+m)+2k,
整理得m=km,因为m>0,
所以k=1,(4分)
则a=-1,所以原抛物线的表达式为y=-x(x-4).(或y=-x
2+4x)(5分)
(2)方法一:由(1)知,点B'的坐标为(2+m,4+m),
由题意,点A'的坐标为(4+m,m),(6分)
作B'C垂直于y轴于C,作A'D垂直于y轴于D,(7分)
因为m>0,所以△A'OB'的面积
=△B'OC的面积+梯形B'CDA'的面积-△A'OD的面积
=
(2+m)(4+m)+
(4+m+m)(4+m-2-m)-
m(4+m)
=3m+8,(8分)
由3m+8=6032,
解得m=2008.(10分)
方法二:由(1)知,点B'的坐标为(2+m,4+m),
由题意,点A'的坐标为(4+m,m),(6分)
设直线A'B'的表达式为y=k'x+b,则
解得
(7分)
则直线A'B'的表达式为y=-2x+3m+8.
设直线A'B'与x轴的交点为C,则点C的坐标为
(,0).(8分)
因为m>0,
所以
OC=>0,y
A'=m>0,y
B'=4+m>0,
所以S
△A'OB'=
OC·yB'-
OC·yA'=
OC(yB'-yA')=
·
·(4+m-m)=3m+8=6032,
解得m=2008.(10分)
解:(1)已知原抛物线经过原点O(0,0)与A(4,0)点,
因此可设原抛物线的表达式为y=ax(x-4).(1分)
配方得y=a(x-2)
2-4a,则其顶点B的坐标为(2,-4a).(2分)
因为顶点B在直线y=kx+2k(k≠0)上,将(2,-4a)代入可得k=-a.(3分)
由题意可知平移后得到的抛物线的顶点B'的坐标为(2+m,-4a+m),即(2+m,4k+m).
因为B'点仍然在直线y=kx+2k上,则4k+m=k(2+m)+2k,
整理得m=km,因为m>0,
所以k=1,(4分)
则a=-1,所以原抛物线的表达式为y=-x(x-4).(或y=-x
2+4x)(5分)
(2)方法一:由(1)知,点B'的坐标为(2+m,4+m),
由题意,点A'的坐标为(4+m,m),(6分)
作B'C垂直于y轴于C,作A'D垂直于y轴于D,(7分)
因为m>0,所以△A'OB'的面积
=△B'OC的面积+梯形B'CDA'的面积-△A'OD的面积
=
(2+m)(4+m)+
(4+m+m)(4+m-2-m)-
m(4+m)
=3m+8,(8分)
由3m+8=6032,
解得m=2008.(10分)
方法二:由(1)知,点B'的坐标为(2+m,4+m),
由题意,点A'的坐标为(4+m,m),(6分)
设直线A'B'的表达式为y=k'x+b,则
解得
(7分)
则直线A'B'的表达式为y=-2x+3m+8.
设直线A'B'与x轴的交点为C,则点C的坐标为
(,0).(8分)
因为m>0,
所以
OC=>0,y
A'=m>0,y
B'=4+m>0,
所以S
△A'OB'=
OC·yB'-
OC·yA'=
OC(yB'-yA')=
·
·(4+m-m)=3m+8=6032,
解得m=2008.(10分)