二次函数综合题.
(1)根据直线解析式求出点B、C的坐标,再根据二次函数解析式令y=0求关于x的一元二次方程即可求出点A、B的坐标,即可得解;
(2)把二次函数解析式整理成顶点式形式,再求出对称轴与直线y=-
x+2的交点,然后根据顶点在交点下方列出不等式,求解即可;
(3)把点C的坐标代入抛物线求出a的值,从而得到函数解析式,再根据点A、B、C的坐标求出OA、OB、OC的长,然后根据两边对应成比例,两三角形相似求出△AOC∽△COB,根据相似三角形的性质求出△ABC是直角三角形,所以,点D与C重合时满足,再根据抛物线对称性,令y=2,解关于x的一元二次方程即可求出点D的另一种情况.
本题是二次函数综合题型,主要考查了函数图象与坐标轴的交点的求解,二次函数顶点坐标,二次函数的对称性,相似三角形的判定与性质,(3)根据点A、B、C的坐标判断出△ABC恰好是直角三角形是解题的关键.
代数几何综合题.