试题

题目:
如图,抛物线y=ax2+(a+c)x+c的顶点B在第一象限,它与y轴正半轴交于点A,与x轴交于青果学院点D,C,点C在x轴正方向.
(1)求点D的坐标;
(2)若直线AB和x轴负方向交于点F,∠BFC=45°,比较DF:DO和tan∠BCF的大小.
答案
青果学院解:(1)y=0时,ax2+(a+c)x+c=0,
△=b2-4ac=(a+c)2-4ac=(a-c)2
结合图形可知,a<0,c>0,
∴x=
-b±
2a
=
-(a+c)±
(a-c)2
2a
=
-(a+c)±(c-a)
2a

解得x1=-1,x2=-
c
a

∴点D的坐标是(-1,0);

(2)当x=0时,y=ax2+(a+c)x+c=c,
∵∠BFC=45°,
∴△AOF是等腰直角三角形,
∴OF=c,
∴DF=OF-DO=c-1,
∴DF:DO=(c-1):1=c-1,
∵-
b
2a
=-
a+c
2a
4ac-b2
4a
=
4ac-(a+c)2
4a
=-
(a-c)2
4a

∴顶点B的坐标是(-
a+c
2a
,-
(a-c)2
4a
),
过点B作BE⊥x轴,垂足为E,则△BEF是等腰直角三角形,
∴BE=EF,
即-
(a-c)2
4a
=-
a+c
2a
+c,
整理得a+c=2,
又∵CE=CO-OE=-
c
a
-(-
a+c
2a
)=
a-c
2a

∴tan∠BCF=
BE
CE
=
-
(a-c)2
4a
a-c
2a
=
c-a
2
=
c-(2-c)
2
=c-1,
∴DF:DO=tan∠BCF=c-1.
青果学院解:(1)y=0时,ax2+(a+c)x+c=0,
△=b2-4ac=(a+c)2-4ac=(a-c)2
结合图形可知,a<0,c>0,
∴x=
-b±
2a
=
-(a+c)±
(a-c)2
2a
=
-(a+c)±(c-a)
2a

解得x1=-1,x2=-
c
a

∴点D的坐标是(-1,0);

(2)当x=0时,y=ax2+(a+c)x+c=c,
∵∠BFC=45°,
∴△AOF是等腰直角三角形,
∴OF=c,
∴DF=OF-DO=c-1,
∴DF:DO=(c-1):1=c-1,
∵-
b
2a
=-
a+c
2a
4ac-b2
4a
=
4ac-(a+c)2
4a
=-
(a-c)2
4a

∴顶点B的坐标是(-
a+c
2a
,-
(a-c)2
4a
),
过点B作BE⊥x轴,垂足为E,则△BEF是等腰直角三角形,
∴BE=EF,
即-
(a-c)2
4a
=-
a+c
2a
+c,
整理得a+c=2,
又∵CE=CO-OE=-
c
a
-(-
a+c
2a
)=
a-c
2a

∴tan∠BCF=
BE
CE
=
-
(a-c)2
4a
a-c
2a
=
c-a
2
=
c-(2-c)
2
=c-1,
∴DF:DO=tan∠BCF=c-1.
考点梳理
二次函数综合题.
(1)令y=0,解关于x的一元二次方程ax2+(a+c)x+c=0,再根据点D在x轴的负半轴即可得解;
(2)根据∠BFC=45°可得△AOF是等腰直角三角形,根据点D与点A的坐标分别表示出DF与DO的长度,即可求出其比值,利用顶点公式写出点B的坐标,过点B作BE⊥x轴于点E,根据∠BFC=45°可知△BEF是等腰直角三角形,利用BE=EF列式求出a、c的关系,再根据BE与CE的长度列式求出tan∠BCF,然后进行比较即可得解.
本题是对二次函数的综合考查,包括二次函数解析式与x轴的交点的求解,等腰直角三角形的性质,顶点坐标的求解,以及正切函数的求解,综合性较强,难度较大,但只要认真分析,仔细计算也不难求解.
代数几何综合题;压轴题.
找相似题