试题

题目:
如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象青果学院限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)点A的坐标为
(0,2)
(0,2)
,点B的坐标为
(-3,1)
(-3,1)

(2)抛物线的解析式为
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2

(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
答案
(0,2)

(-3,1)

y=
1
2
x2+
1
2
x-2

青果学院解:(1)∵C(-1,0),AC=
5

∴OA=
AC2-OC2
=
5-1
=2,
∴A(0,2);
过点B作BF⊥x轴,垂足为F,
∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,
在△AOC与△CFB中,
∠FBC=∠ACO
BC=AC
∠BCF=∠CAO

∴△AOC≌△CFB,
∴CF=OA=2,BF=OC=1,
∴OF=3,
∴B的坐标为(-3,1),
故答案为:(0,2),(-3,1);

(2)∵把B(-3,1)代入y=ax2+ax-2得:
1=9a-3a-2,
解得a=
1
2

∴抛物线解析式为:y=
1
2
x2+
1
2
x-2.
故答案为:y=
1
2
x2+
1
2
x-2;

(3)由(2)中抛物线的解析式可知,抛物线的顶点D(-
1
2
,-
17
8
),
设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:
-3k+b=1
-
1
2
k+b=-
17
8

解得
k=-
5
4
b=-
11
4

∴BD的关系式为y=-
5
4
x-
11
4

设直线BD和x 轴交点为E,则点E(-
11
5
,0),CE=
6
5

∴S△DBC=
1
2
×
6
5
×(1+
17
8
)=
15
8


(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;
则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1
过点P1作P1M⊥x轴,
∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,
∴△MP1C≌△FBC.
∴CM=CF=2,P1M=BF=1,
∴P1(1,-1);
②若以点A为直角顶点;
则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2
过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,
∴P2(2,1),
经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=
1
2
x2+
1
2
x-2上.
考点梳理
二次函数综合题.
(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标;
(2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;
(3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据S△DBC=S△CEB+S△CED进行计算即可;
(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点P1点的坐标;
②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可.
本题考查的是二次函数综合题,涉及到全等三角形的判定定理、用待定系数法求一次函数及二次函数的解析式、二次函数的性质、勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
压轴题.
找相似题