题目:

如图,已知抛物线y=
x
2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线
y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH垂直OB于点H,若PB=5t,且0<t<1,存在使P,H,Q为顶点的三角形与三角形COQ相似的t的值有
.
答案
解:根据题意过点C的直线
y=x-3与x轴交于点Q,得出C点坐标为:(0,-3),
将A点的坐标为(-1,0),C(0,-3)代入二次函数解析式求出:
b=-
,c=-3;
得y=
x
2-
x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,
又∵OC=3,
∴BC=5.
由题意,得△BHP∽△BOC,
∵OC:OB:BC=3:4:5,
∴HP:HB:BP=3:4:5,
∵PB=5t,
∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=
x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.
①当H在Q、B之间时,QH=OH-OQ=(4-4t)-4t=4-8t.
②当H在O、Q之间时,QH=OQ-OH=4t-(4-4t)=8t-4.
综合①,②得QH=|4-8t|;
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH:CO=HP:OQ,得
=
,
解得:t=
;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
=
,
即t
2+2t-1=0.
解得:t
1=
-1,t
2=-
-1(舍去),
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH:CO=HP:OQ,得
=
,
解得:t=
;
若△PHQ∽△COQ,则PH:CO=HQ:OQ,得
=
,
即t
2-2t+1=0.
∴t
1=t
2=1(舍去).
综上所述,存在t的值,t
1=
-1,t
2=
,t
3=
,
故答案为:
-1,
,
.