试题

题目:
青果学院如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D,当OD=AD=3时,这两个二次函数的最大值之和等于
5
5

答案
5

青果学院解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM,
∵OD=AD=3,DE⊥OA,
∴OE=EA=
1
2
OA=2,
由勾股定理得:DE=
OD2-OE2
=
5

设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
BF
DE
=
OF
OE
CM
DE
=
AM
AE

∵AM=PM=
1
2
(OA-OP)=
1
2
(4-2x)=2-x,
BF
5
=
x
2
CM
5
=
2-x
2

解得:BF=
5
2
x,CM=
5
-
5
2
x,
∴BF+CM=
5

故答案为:
5
考点梳理
二次函数综合题.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=
5
,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出
BF
DE
=
OF
OE
CM
DE
=
AM
AE
,代入求出BF和CM,相加即可求出答案.
此题考查了二次函数的最值,勾股定理,等腰三角形性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
计算题;压轴题.
找相似题