试题
题目:
如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y
1
和过P、A两点的二次函数y
2
的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于( )
A.5
B.2
7
C.8
D.6
答案
B
解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM,
∵OD=AD=8,DE⊥OA,
∴OE=EA=
1
2
OA=6,
由勾股定理得:DE=
O
D
2
-O
E
2
=2
7
.
设P(2x,0),根据二次函数的对称性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴
BF
DE
=
OF
OE
,
CM
DE
=
AM
AE
,
∵AM=PM=
1
2
(OA-OP)=
1
2
(12-2x)=6-x,
即
BF
2
7
=
x
6
,
CM
2
7
=
6-x
6
,
解得:BF=
7
3
x,CM=2
7
-
7
3
x,
∴BF+CM=2
7
.
故选B.
考点梳理
考点
分析
点评
专题
二次函数综合题.
过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=6,DE=2
7
.设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出
BF
DE
=
OF
OE
,
CM
DE
=
AM
AE
,代入求出BF和CM,相加即可求出答案.
此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.
压轴题.
找相似题
(2011·安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是( )
(2010·遵义)如图,两条抛物线y
1
=-
1
2
x
2
+1,y
2
=
-
1
2
x
2
-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )
(2004·深圳)抛物线过点A(2,0)、B(6,0)、C(1,
3
),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是( )
(2002·济南)抛物线y=ax
2
与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( )
(2013·宁波模拟)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax
2
(a<0)的图象上,则a的值为( )