试题
题目:
(2013·历城区三模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm
2
.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是( )
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.当0<t≤5时,
y=
2
5
t
2
D.当
t=
29
4
秒时,△ABE∽△QBP
答案
B
解:根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故A选项正确;
又∵从M到N的变化是2,
∴ED=2,
∴AE=AD-ED=5-2=3,
在Rt△ABE中,AB=
BE
2
-A
E
2
=
5
2
-
3
2
=4,
∴cos∠ABE=
AB
BE
=
4
5
,故B选项错误;
如图(1)过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5
,
∴PF=PBsin∠PBF=
4
5
t,
∴当0<t≤5时,y=
1
2
BQ·PF=
1
2
t·
4
5
t=
2
5
t
2
,故C选项正确;
当
t=
29
4
秒时,点P在CD上,此时,PD=
29
4
-BE-ED=
29
4
-5-2=
1
4
,
PQ=CD-PD=4-
1
4
=
15
4
,
∵
AB
AE
=
4
3
,
BQ
PQ
=
4
3
,
∴
AB
AE
=
BQ
PQ
,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故D选项正确.
故选B.
考点梳理
考点
分析
点评
二次函数综合题;动点问题的函数图象.
根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E时点Q到达点C是解题的关键,也是本题的突破口.
找相似题
(2011·安顺)正方形ABCD边长为1,E、F、G、H分别为边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设小正方形EFGH的面积为y,AE=x.则y关于x的函数图象大致是( )
(2010·遵义)如图,两条抛物线y
1
=-
1
2
x
2
+1,y
2
=
-
1
2
x
2
-1
与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )
(2004·深圳)抛物线过点A(2,0)、B(6,0)、C(1,
3
),平行于x轴的直线CD交抛物线于点C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是( )
(2002·济南)抛物线y=ax
2
与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是( )
(2013·宁波模拟)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax
2
(a<0)的图象上,则a的值为( )