试题
题目:
下列图象中,当ab>0时,函数y=ax
2
与y=ax+b的图象是( )
A.
B.
C.
D.
答案
D
解:A、对于直线y=ax+b,得a>0,b<0,与ab>0矛盾,所以A选项错误;
B、由抛物线y=ax
2
开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,所以B选项错误;
C、由抛物线y=ax
2
开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,所以C选项错误;
D、由抛物线y=ax
2
开口向下得到a<0,则直线y=ax+b经过第二、四象限,由于ab>0,则b<0,所以直线与y轴的交点在x轴下方,所以D选项正确.
故选D.
考点梳理
考点
分析
点评
专题
二次函数的图象;一次函数的图象.
根据直线直线y=ax+b经过的象限得到a>0,b<0,与ab>0矛盾,则可对A进行判断;根据抛物线y=ax
2
开口向上得到a>0,而由直线y=ax+b经过第二、四象限得到a<0,由此可对B进行判断;根据抛物线y=ax
2
开口向下得到a<0,而由直线y=ax+b经过第一、三象限得到a>0,由此可对C进行判断;根据抛物线y=ax
2
开口向下得到a<0,则直线y=ax+b经过第二、四象限,并且b<0,得到直线与y轴的交点在x轴下方,由此可对D进行判断.
本题考查了二次函数的性质:二次函数y=ax
2
+bx+c(a≠0)的图象为抛物线,顶点式为y=a(x-
b
2a
)
2
+
4ac-
b
2
4a
,顶点坐标为(-
b
2a
,
4ac-
b
2
4a
);当a>0,抛物线开口向上;对称轴为直线x=-
b
2a
;抛物线与y轴的交点坐标为(0,c).也考查了一次函数的性质.
数形结合.
找相似题
(2013·齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x
2
+1与y=
3
x
的交点的横坐标x
0
的取值范围是( )
(2013·聊城)二次函数y=ax
2
+bx的图象如图所示,那么一次函数y=ax+b的图象大致是( )
(2013·达州)二次函数y=ax
2
+bx+c的图象如图所示,反比例函数
y=
b
x
与一次函数y=cx+a在同一平面直角坐标系中的大致图象是( )
(2012·西宁)如图,二次函数y=ax
2
+bx+c的图象过(-1,1)、(2,-1)两点,下列关于这个二次函数的叙述正确的是( )
(2012·泰安)二次函数y=a(x+m)
2
+n的图象如图,则一次函数y=mx+n的图象经过( )