答案
解:
| x2+2yz=x ① | y2+2zx=z ② | z2+2xy=y ③ |
| |
,由①-②得:x
2-y
2+2z(y-x)=x-z(4),由①-③得:x
2-z
2+2y(z-x)=x-y(5),
(4)-(5):2x-y-z=1,2x-1=y+z,∵y
2=-z(y+z),z
2=-y(y+z),∴
=
,
∴y
3=z
3,∴y=z,代入①x
2+2y
2=x(5),代入②y
2+2xy=y(6),由(5)(6)得:y=0,x=1或y=
,x=1+
或y=-
,x=1-
,
∴原方程组的为:
或
或
.
解:
| x2+2yz=x ① | y2+2zx=z ② | z2+2xy=y ③ |
| |
,由①-②得:x
2-y
2+2z(y-x)=x-z(4),由①-③得:x
2-z
2+2y(z-x)=x-y(5),
(4)-(5):2x-y-z=1,2x-1=y+z,∵y
2=-z(y+z),z
2=-y(y+z),∴
=
,
∴y
3=z
3,∴y=z,代入①x
2+2y
2=x(5),代入②y
2+2xy=y(6),由(5)(6)得:y=0,x=1或y=
,x=1+
或y=-
,x=1-
,
∴原方程组的为:
或
或
.