试题

题目:
设x,y为实数,且满足
(x-1)3+2003(x-1)=-1
(y-1)3+2003(y-1)=1
,则x+y=(  )



答案
C
解:
(x-1)3+2003(x-1)=-1        ①
(y-1)3+2003(y-1)=1         ②

将①+②得,
(x-1)3+2003(x-1)+(y-1)3+2003(y-1)=0
·[(x-1)3+(y-1)3]+[2003(x-1)+2003(y-1)]=0
·(x-1+y-1)[(x-1)2-(x-1)(y+1)+(y-1)2]+2003(x-1+y-1)=0
·(x-1+y-1)[(x-1)2-(x-1)(y-1)+(y-1)2+2003]=0
∵(x-1)2-2(x-1)(y-1)+(y-1)2≥0
∴(x-1)2+(y-1)2≥2|(x-1)(y-1)|≥|(x-1)(y-1)|
∴(x-1)2-(x-1)(y-1)+(y-1)2+2003>0
∴x-1+y-1=0,即x+y=2.
故选C.
考点梳理
高次方程;因式分解-提公因式法.
观察方程组
(x-1)3+2003(x-1)=-1
(y-1)3+2003(y-1)=1
,发现两方程相加后,所得方程等号坐标再利用平方和公式、提取公因数后,可转化为(x-1+y-1)[(x-1)2-(x-1)(y-1)+(y-1)2+2003],右边恰好为0.再一步分析(x-1)2-(x-1)(y-1)+(y-1)2+2003>0,因而只能是x-1+y-1=0,原题得解.
本题考查高次方程.在解题过程中用到了立方和公式、完全平方式、提取公因式.
因式分解.
找相似题