试题
题目:
(1)(-7)-(-8)
(2)5.6-7+3.4
(3)
12×(
1
4
-
2
3
-
1
2
)
(4)
-
3
2
×(-
1
3
)-
2
4
÷(-
1
2
)
答案
解:(1)原式=(-7)+8
=1;
(2)原式=5.6+3.4-7
=9-7
=2;
(3)原式=12×
1
4
-12×
2
3
-12×
1
2
=3-8-6
=-11;
(4)原式=-9×(-
1
3
)-16÷(-
1
2
)
=3+32
=35.
解:(1)原式=(-7)+8
=1;
(2)原式=5.6+3.4-7
=9-7
=2;
(3)原式=12×
1
4
-12×
2
3
-12×
1
2
=3-8-6
=-11;
(4)原式=-9×(-
1
3
)-16÷(-
1
2
)
=3+32
=35.
考点梳理
考点
分析
点评
有理数的混合运算.
(1)先简化符号,再做加减;
(2)利用加法交换律,把两个整数结合,再计算;
(3)直接运用乘法的分配律计算;
(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减.
混合运算中要特别注意运算顺序,以及符号的处理.注意区分-3
2
=-9,而(-3)
2
=9.
找相似题
已知
a=-
1999×1999-1999
1998×1998+1998
,
b=-
2000×2000-2000
1999×1999+1999
,
c=-
2001×2001-2001
2000×2000+2000
,则abc=( )
如果a
2
b
3
<0,那么( )
在讨论有理数的运算时,同学们得出了下面四个结论:
(1)较大的有理数与较小的有理数差一定是正数;
(2)有理数的平方一定是正数;
(3)有理数的绝对值一定是正数;
(4)负数的立方一定是负数.
其中正确的结论有( )
下列各式中正确的有( )0<|-10|,(-3)
3
=-3
3
,-1>-0.01,-1+3=-4
计算:
(1)-2+
1
3
÷(-2)
(2)(-24)×
(
1
8
-
1
3
+
1
4
)
(3)-1
4
-(-
5
1
2
)÷
2
1
3
+(-2)
3
(4)1-
1
2
[3-(-
2
3
)
2
-(-1)
4
]+
1
4
÷(-
1
2
)
3
.