试题
题目:
如果a
2
b
3
<0,那么( )
A.a>0,b<0
B.a为任何数,b<0
C.a≠0,b<0
D.a<0,b为任何数
答案
C
解:∵a
2
b
3
<0,
∴b
3
<0,
即b<0,
又因为a
2
>0且a≠0,
那么应该选择a≠0,b<0.
故选C.
考点梳理
考点
分析
点评
有理数的混合运算.
先根据有理数的乘方法则及平方数的非负性判断出a,b的符号,再进行选择即可.
本题就是考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
找相似题
已知
a=-
1999×1999-1999
1998×1998+1998
,
b=-
2000×2000-2000
1999×1999+1999
,
c=-
2001×2001-2001
2000×2000+2000
,则abc=( )
在讨论有理数的运算时,同学们得出了下面四个结论:
(1)较大的有理数与较小的有理数差一定是正数;
(2)有理数的平方一定是正数;
(3)有理数的绝对值一定是正数;
(4)负数的立方一定是负数.
其中正确的结论有( )
下列各式中正确的有( )0<|-10|,(-3)
3
=-3
3
,-1>-0.01,-1+3=-4
计算:
(1)-2+
1
3
÷(-2)
(2)(-24)×
(
1
8
-
1
3
+
1
4
)
(3)-1
4
-(-
5
1
2
)÷
2
1
3
+(-2)
3
(4)1-
1
2
[3-(-
2
3
)
2
-(-1)
4
]+
1
4
÷(-
1
2
)
3
.
计算:
[-
2
3
-|-4|+(-2
1
4
)×
16
27
]÷(-1
)
2009
.