试题

题目:
(1)先化简、再求值:
1
2x
-
1
x+y
(x2-y2+
x+y
2x
)
,其中x=
2
,y=3.
(2)先化简、再求值:
a-3
2a-4
÷(
5
a-2
-a-2)
,其中a=
3
-3

答案
解:(1)原式=
1
2x
-
1
x+y
(x+y)(x-y)-
1
x+y
·
x+y
2x

=
1
2x
-(x-y)-
1
2x

=-(x-y)
=y-x,
当x=
2
,y=3时,
原式=3-
2

(2)原式=
a-3
2(a-2)
÷[
5-(a+2)(a-2)
(a-2)
]

=
a-3
2(a-2)
·
a-2
9-a2

=
a-3
2(a-2)
·
a-2
(3+a)(3-a)

=-
1
2(a+3)

当a=
3
-3时,原式=-
1
2(
3
-3+3)
=-
3
6

解:(1)原式=
1
2x
-
1
x+y
(x+y)(x-y)-
1
x+y
·
x+y
2x

=
1
2x
-(x-y)-
1
2x

=-(x-y)
=y-x,
当x=
2
,y=3时,
原式=3-
2

(2)原式=
a-3
2(a-2)
÷[
5-(a+2)(a-2)
(a-2)
]

=
a-3
2(a-2)
·
a-2
9-a2

=
a-3
2(a-2)
·
a-2
(3+a)(3-a)

=-
1
2(a+3)

当a=
3
-3时,原式=-
1
2(
3
-3+3)
=-
3
6
考点梳理
二次根式的化简求值;分式的化简求值.
(1)用平方差公式把(x2-y2)分解因式后,又分配律化简,再代值计算;
(2)先通分,变除法为乘法后,化简求值.
本题考查了分式的化简和二次根式的计算,需要熟练掌握.
计算题.
找相似题